区域(所需用到的部件的光学区域之外)。测量以后再用机械方法除去部件上多余的部分。但该方法并没有得到采纳,因为这会增加成本并降低(破坏)生产效率。
在腔内压力的非接触式测量方面,位于瑞士温特图尔市的奇石乐仪器股份公司已经开发出专用的销钉式测量传感器,并与位于德国慕尼黑的克劳斯玛菲塑料技术有限公司在一个用于棱镜生产的注射-压缩装置上成功实现了这一构想。该新型的传感器被整合到模具中,并被安放在模腔壁后面或压缩柱塞上,以此测量由模腔内压力对钢材的压缩。这种测量方法的建立使得在一个双腔测试模具中利用两个测量销钉感应器快速和便利地优化工艺控制成为可能。在生产过程中,棱镜的质量是依靠腔内的压力进行监控的。
图6所示分别为膨胀压缩模塑腔内压力曲线(棕色)、螺杆前部压力(黑色)和压缩柱塞处的压力(红色)。在注射阶段,模腔内压力一直增加直到其被填满为止。然后腔内的压力由于保压压力和膨胀力的作用而被建立起来。从pvT图上来看,该压力保持一常数值。压缩阶段开始,紧接着是最终的脱模阶段。
在成型的早期阶段对质量缺陷进行识别
注射-压缩成型已被证明是一种适用于光学部件生产的生产工艺。许多参数对产品质量有显著影响,并只有腔内压力已知的情况下这些参数的变化才能被追踪并被控制。在注射模塑期间,腔内的压力是压缩力或锁模力随时间变化的函数。
无需通过对部件的光学性能进行复杂的测试,而通过测定腔内的压力来对工艺进行连续监控就能提供早期的部件性能信息。因此在生产车间不需要在产品的质量缺陷被检测出来之前不必要花费较长的时间来生产次品。
上述结果已由一系列不同的实验所验证。这说明在光学部件的生产过程中,“沿流路通路的pvT图示”,“三维pvT图示”适于作为质量监控的参考曲线。在重新开始模塑时,参考曲线也具有使仪器能更快地达到优化工作状态的优势。
因而决定性的因素是模塑试验和随后的模塑优化阶段。确定理想的基本工艺需要“经典”的模腔压力测定。只有当实现合理的工艺流程,部件才能受到了上述的光学性能测试。在使部件质量达到所需要求的同时,参考曲线也使生产监控-因而质量监控成为可能。
展望
因为参考曲线是合光学性能相关联的,可以想像将来能用模腔压力作为压缩工艺的一个控制参数。为了这个目的,当前的模腔压力(真实状态)跟踪参考曲线(给定点的模腔压力曲线)的轨迹。利用适合的控制策略,将来机器也有可能完全自动调节来开始生产。这就不需要手动优化过程,因为生产过程中只需要给定模腔内压力的最大允许值。
上一页 [1] [2]
文章地址:
http://www.jiajingmould.com/Article/mjjs/200809/17.html