更新时间:2008-9-1 16:04:52 文章来源:互联网 点击:
摘 要:
现在很多发动机开发商正采用快速成型方法生产发动机样机,这种方法省略了制作模具的工序,使发动机的研制周期大大缩短,一套发动机的主要部件,包括缸体、缸头、进排气管等在几周内就可制造完成,用于后期的试验研究,如果设计需要更改,只需更改CAD数据,在很短的时间内就可制作出修改后样机,进行进一步的试验评定。
现在很多发动机开发商正采用快速成型方法生产发动机样机,这种方法省略了制作模具的工序,使发动机的研制周期大大缩短,一套发动机的主要部件,包括缸体、缸头、进排气管等在几周内就可制造完成,用于后期的试验研究,如果设计需要更改,只需更改CAD数据,在很短的时间内就可制作出修改后样机,进行进一步的试验评定。
1 快速成型技术
快速成型(Rapid Prototyping,简称RP)技术是近年来发展起来的直接根据CAD模型快速生产样件或零件的成组技术总称,与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数据成型系统。用激光束或其他方法将材料堆积而形成实体零件。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大的提高了生产效率和制造柔性。
快速成型的基本原理是离散叠加制造,一个零件不管其外形和内腔是多么复杂,都可以用一组平行平面去截该零件,得到一系列足够薄的切片,这些薄切片可以近似地看作二维零件模型,用不同技术的能将这些薄切片逐步制作出来,同时使这些薄片按照一定的规则堆积起来就可以得到一个完整的零件。目前成熟的快速成型技术有很多,这里仅介绍最适于发动机部件制作的选区激光烧结(简称SLS)方法。
选择激光烧结(Selective Laser Sintering,SLS)是利用红外激光光束所提供热量熔化热塑性材料以形成三维零件。通过铺粉滚筒在加工平面铺上一薄层热塑性材料,然后用激光在粉末表面扫描零件的截面形状。对于非晶体物质,激光扫描到的地方将引起粉体软化,同时整体之间在相互接触点处粘结起来形成固体结构,这个过程称为熔化或烧结;对于结晶体,激光的热量使得粉体熔化形成液态,通过冷却后便硬化为固体。
加工开始时先将一层很薄(100μm~250μm)的热能粉末均匀地铺在工作平台上,辅助加热装置将其加热到熔点以下的温度,在均匀的粉末表面,计算机控制激光按照零件当前层的信息扫描,激光扫描到的地方粉末烧结形成固体,激光未扫描到的地方仍是粉末,可以做为下一层的支撑并能在成型完成后去除。上一层制做完毕后成型活塞下降一层,供粉活塞上升,用铺粉滚筒将粉体从供粉活塞移到成型活塞,将粉体铺平后即可扫描下一层。不断重复这个辅粉和选区烧结过程直到最后一层,一个三维实体就制作出来了。
图1 选区激光烧结的原理
选区激光烧结的最大特点一个是成型过程与复杂程度无关,因此特别适合于内部结构极其复杂的发动机缸体、缸头、进排气管等部件;另一个重要的特点是成型材料广泛,特别是可以用铸造的树脂砂和可消失熔模材料成型,因此,可以通过与铸造技术结合,快速铸造出发动机的部件。
2 快速铸造技术
尽管快速成型技术有效的解决了复杂零件的成型问题,但由于快速成型本身工艺成型材料的限制,使得通过快速成型得到的零件很难与实际最终零件的材料一致,在零件的各项性能指标方面也无法达到最终零件的要求,因此直接通过RP技术得到的三维实体一般只能做为可视模型和装配模型,而不能作为功能样机进行各种测试和使用检验。
快速铸造(Quick Casting or Rapid Casting)技术是将快速成型与传统铸造技术有效结合快速制造复杂金属零件的技术,发动机的缸体、缸头一半都是铸造产品,利用快速铸造技术可以在很短时间内得到与最终产品材料一致、性能接近的发动机产品供测试与检验。
图2 快速铸造与传统铸造过程
快速铸造的工艺流程如图2所示,利用选区激光烧结实现快速铸造的途径有二条:一是通过激光直接烧结铸造用热固化树脂砂,再通过砂型铸造得到铸件;另一种方法是用激光直接烧结可消失的树脂砂或蜡粉,再通过精密铸造工艺得到铸件。这两种方法的共同特点都是省略的模具制造,因此,如果用于单件式小批量的生产,生产周期大大缩短了。
图3 用选区激光烧结制成的砂芯
用快速成型的方法制作砂型,首先要根据零件的三维CAD毛坯模型设计出组合砂型模型。为了与以后的批量生产工艺靠近,砂型模型应尽量与通过模具制作的砂型模型保持一致,将砂型模型的各部分经过软件的分层处理转换为快速成型设备的加工文件,就可以进行激光烧结成型了。图3是激光烧结成型的一个复杂砂型。成型用的树脂砂与通常使用的热固化树脂砂极为相似,只不过对砂粒径分布和形态,树脂成分及表面处理等方面有更严格的指标。成型时的层厚一般为0.2mm,精度可控制在±0.25mm以内。由于激光扫描的速度很快,树脂在成型时不能达到完全固化。成型后将未烧结的浮砂清除后,砂型一般要放到加热箱中进行二次固化。经二次固化后的砂型可达到与射芯机制得的砂型相同的性能。由于发动机的部件大多采用砂型铸造,因此快速砂型铸造已成为发动机样机试制的最常用和最有效的方法。
图4 用选区激光烧结制成的进气管熔模
采用熔模快速铸造的方法是用50-80μm的可消失树脂粉末或蜡粉为原料,将零件的三维CAD毛坯模型直接进行分层处理后,用激光将粉末直接逐层烧结成与零件毛坯一致的精密熔模,再将熔模直接通过石膏型或陶瓷型壳铸造就可得到所需要的铸件。采用快速精密铸造制作的零件表面质量好,精度高,不需要设计砂型模型等步骤,工艺过程相对简单。同时由于零件毛坯的体积往往小于砂型的体积,因此用SLS直接成型熔模较之成型砂型速度更快,成本相对较低。但是熔模铸造一般比较适合于薄壁零件,对于厚壁零件往往因冷却速度慢导致出现缩松等铸造缺陷,因此这种方法在发动机部件的制作中一般用于进气管等相对壁厚较薄的零件,图4是用可消失树脂粉直接烧结成型的发动机进气管的铸造熔模。
3 应用案例
图5 用快速精密铸造方法制造的铝合金进气管毛坯
图5是用快速精密铸造方法制造的铝合金进气管零件。从收到零件的三维CAD数据到毛坯完成仅10天时间,其中零件熔摸的快速成型1天,熔模铸造7天,其他后处理及检验2天。进气道是发动机极其重要的组成部分,由复杂的自由曲面构成,它对提高进气效率,改善燃烧过程有十分重要的影响。在发动机的设计过程中,需要对不同的进气道方案进行气道试验,传统的方法是用加工出十几个或几十个截面的气道木模或石膏模,再翻制成砂模铸造出气道。对气道进行试验找出不足后,还要重新修改模型。如此反复,费时费力,而且精度难以保证。采用快速成型方法,可一次性地提供一组不同曲面的CAD数据,通过快速铸造,同时得到一组进气管零件。经过测试,得到一组全面的数据,从而筛选出最佳的气道方案,这样大大加快了研制速度。相对于汽车进气管,发动机的缸体和缸盖结构更为复杂,但是快速成型的最大优点就是与复杂程度无关,越复杂的零件越适合快速成型制作。由于缸体、缸盖的内部结构复杂且壁厚相对较厚,制作这些零件的最佳方法是快速砂型铸造。图6是用快速砂型铸造获得的一组缸体和缸盖的铝铸件。此类零件的制作周期平均约2-3周。由于铸造工艺与最终生产工艺极其相近,零件的尺寸精度和机械性能与最终产品零件具有很强的可比性。因此,快速砂型铸造的缸体缸盖可直接用于发动机的各种评价试验,如对气道进行流动分析,对水道进行冷却性能测试。
快速成型与铸造技术结合,可有效地应用于发动机设计开发阶段中样机的快速制造,有助于保证产品开发速度,提高产品的开发质量,大大降低开发成本,推动产品早日进入市场。